Step 1) Subtract #11/20# from each side of the equation to isolate the #n# term while keeping the equation balanced:
#(3n)/10 + 11/20 - 11/20 = 5/8 - 11/20#
#(3n)/10 + 0 = 5/8 - 11/20#
#(3n)/10 = 5/8 - 11/20#
Step 2) Put each fraction on the right side of the equation over a common denominator and subtract the fractions:
#(3n)/10 = (5/5 xx 5/8) - (2/2 xx 11/20)#
#(3n)/10 = 25/40 - 22/40#
#(3n)/10 = (25 - 22)/40#
#(3n)/10 = 3/40#
Step 3) Multiply each side of the equation by #color(red)(10)/color(blue)(3)# to solve the equation for #n# while keeping the equation balanced:
#color(red)(10)/color(blue)(3) xx (3n)/10 = color(red)(10)/color(blue)(3) xx 3/40#
#cancel(color(red)(10))/cancel(color(blue)(3)) xx (color(blue)(cancel(color(black)(3)))n)/color(red)(cancel(color(black)(10))) = cancel(color(red)(10))/cancel(color(blue)(3)) xx color(blue)(cancel(color(black)(3)))/(color(red)(cancel(color(black)(40)))4)#
#n = 1/4#