How do you solve #\frac { 4x } { 2x - 1} + \frac { 3} { 2x + 1} \leq 0#?
2 Answers
The solution is
Explanation:
We cannot do crossing over.
Let's rewrite and simplify the inequality
Let
Let's build the sign chart
Therefore,
graph{(4x)/(2x-1)+3/(2x+1) [-11.26, 11.25, -5.64, 5.61]}
Explanation:
#"express the left side as a single fraction"#
#(4x(2x+1))/((2x-1)(2x+1))+(3(2x-1))/((2x-1)(2x+1))<=0#
#rArr(8x^2+10x-3)/((2x-1)(2x+1))<=0#
#"factorise the numerator using the "color(blue)"quadratic formula"#
#rArr((x+3/2)(x-1/4))/((2x-1)(2x+1))<=0#
#"the zeros of the numerator/denominator are"#
#"numerator "x=-3/2,x=1/4,"denominator "x=+-1/2#
#"note that "x!=+-1/2#
#"as this would result in the function being undefined"#
#"the domain is split into 5 intervals as follows"#
#(1)color(white)(x)x<=-3/2color(white)(x)(2)color(white)(x)-3/2<=x<-1/2#
#(3)color(white)(x)-1/2 < x<=1/4color(white)(x)(4)color(white)(x)1/4<=x<1/2color(white)(x)(5)color(white)(x)x>1/2#
#"consider a "color(blue)"test point in each interval"#
#"we want to find where the function is negative "x<=0#
#"substitute each test point into the function and consider"#
#"it's sign"#
#(1)color(white)(x)color(red)(x=-2 )to(+)/(+)tocolor(red)" positive"#
#(2)color(white)(x)color(red)(x=-1)to(-)/(+)tocolor(blue)" negative"#
#(3)color(white)(x)color(red)(x=0)to(-)/(-)tocolor(red)" positive"#
#(4)color(white)(x)color(red)(x=3/8)to(+)/(-)tocolor(blue)" negative"#
#(5)color(white)(x)color(red)(x=1)to(+)/(+)tocolor(red)" positive"#
#"hence the intervals that satisfy the inequality are"#
#-3/2<=x<-1/2" or "1/4<=x<1/2#
#"in interval notation " [-3/2,-1/2)uu[1/4,1/2)#
graph{(8x^2+10x-3)/((2x-1)(2x+1)) [-10, 10, -5, 5]}