First, add #color(red)(8)# to each side of the equation to isolate the #n# term while keeping the equation balanced:
#5/14n - 8 + color(red)(8) = 2 + color(red)(8)#
#5/14n - 0 = 10#
#5/14n = 10#
Now, multiply each side of the equation by #color(red)(14)/color(blue)(5)# to solve for #n# while keeping the equation balanced:
#color(red)(14)/color(blue)(5) xx 5/14n = color(red)(14)/color(blue)(5) xx 10#
#cancel(color(red)(14))/cancel(color(blue)(5)) xx color(blue)(cancel(color(black)(5)))/color(red)(cancel(color(black)(14)))n = color(red)(14)/cancel(color(blue)(5)) xx color(blue)(cancel(color(black)(10)))2#
#n = color(red)(14) xx 2#
#n = 28#