How do you solve #\frac { x - 2+ 3} { x + 3} + \frac { 3} { 20} = x#?

1 Answer
Sep 22, 2017

Answer:

Solution : # x ~~ -2.44 , x= 0.59#

Explanation:

# (x-2+3)/(x+3) +3/20 =x # or

# (x+1)/(x+3) +3/20 =x ;# Multiplying by #20(x+3)# on both sides,

we get # 20(x+1) +3(x+3) =20x(x+3) # or

# 20x +20 +3x+9=20x^2+60x# or

# 20x^2+60x -20x -3x -29 =0# or

# 20x^2+37x -29 =0 ; a=20 , b= 37 ;c =-29 #

Discriminant : #D= b^2-4ac=37^2-4*20*(-29) =3689#

#x = (-b+- sqrtD)/(2a) = (-37+- sqrt3689)/(2*20)# or

#x = -37/40 +- 60.74/40 :. x ~~ -2.44 , x= 0.59#

Solution : # x ~~ -2.44 , x= 0.59# [Ans]