How do you solve #\frac { - x + 8} { x - 2} \geq 5#?

1 Answer
Feb 24, 2017

The solution is # x in ]2,3]#

Explanation:

We cannot do crossing over.

#(-x+8)/(x-2)>=5#

#(8-x)/(x-2)-5>=0#

#((8-x)-5(x-2))/(x-2)>=0#

#((8-x-5x+10))/(x-2)>=0#

#((18-6x))/(x-2)>=0#

#(6(3-x))/(x-2)>=0#

Let #f(x)=(6(3-x))/(x-2)#

The domain of #f(x)# is #D_f(x)=RR-{2}#

We can build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaa)##2##color(white)(aaaaaaaa)##3##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x-2##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##3-x##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(aaaa)##-#

#color(white)(aaaa)##f(x)##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(aaaa)##-#

Therefore,

#f(x)>=0# when # x in ]2,3]#