How do you solve #intx^2/(sqrt(x^2-9))dx# using trig substitution?

2 Answers
Apr 18, 2018

#int x^2/sqrt(x^2-9)dx = (xsqrt(x^2-9))/2 +9/2ln abs (x +sqrt(x^2-9)) +C#

Explanation:

The integrand is defined for #x in(-oo,-3) uu (3,+oo)#. Let us focus for the moment on #x in (3,+oo)# and substitute:

#x = 3sect#

with #t in (0,pi/2)#

so that:

#dx = 3sect tant dt#

and:

#int x^2/sqrt(x^2-9)dx = int ((3sect)^2(3sect tant) dt)/sqrt((3sect)^2-9)#

#int x^2/sqrt(x^2-9)dx = 27 int (sec^3t tant dt)/sqrt(9sec^2t-9)#

#int x^2/sqrt(x^2-9)dx = 9 int (sec^3t tant dt)/sqrt(sec^2t-1)#

Use now the trigonometric identity:

#sec^2t -1 = tan^2t#

and considering that for #t in (0,pi/2)# the tangent is positive:

#sqrt(sec^2t -1) = tant#

so:

#int x^2/sqrt(x^2-9)dx = 9 int (sec^3t tant dt)/tant#

#int x^2/sqrt(x^2-9)dx = 9 int sec^3tdt#

Now write #sec^3t# as #sect xx sec^2t#, and as #d/dt tant = sec^2t# we can integrate by parts:

#int sec^3tdt = int sect d(tant)#

#int sec^3tdt = sect tant - int tant d(sect )#

#int sec^3tdt = sect tant - int tan^2tsect dt#

using the same identity again:

#int sec^3tdt = sect tant - int (sec^2t-1)sect dt#

and based in the linearity of the integral:

#int sec^3tdt = sect tant - int sec^3t+ int sect dt#

The integral now appears on both sides of the equation and we can solve for it:

#2int sec^3tdt = sect tant + int sect dt#

and finally :

#int sec^3tdt = (sect tant)/2 + 1/2 ln abs (sect+tant)+C#

Undo now the substitution:

#int x^2/sqrt(x^2-9)dx = (9sect tant)/2 + 9/2 ln abs (sect+tant)+C#

#int x^2/sqrt(x^2-9)dx = (3xsqrt((x/3)^2-1) )/2 + 9/2 ln abs (x/3+sqrt((x/3)^2-1))+C#

#int x^2/sqrt(x^2-9)dx = (xsqrt(x^2-9))/2 +9/2ln abs (x +sqrt(x^2-9)) +C#

By direct differentiation we can see that the solution is valid also for #x in (-oo,-3)#.

Apr 19, 2018

# 1/2{xsqrt(x^2-9)+9ln|(x+sqrt(x^2-9))|}+C#.

Explanation:

Let us solve the Problem without using substn.

#I=intx^2/sqrt(x^2-9)dx#.

#:. I=int{(x^2-9)+9}/sqrt(x^2-9)dx#,

#=int{(x^2-9)/sqrt(x^2-9)+9/sqrt(x^2-9)}dx#,

#=intsqrt(x^2-9)dx+9int1/sqrt(x^2-9)dx#,

#={x/2sqrt(x^2-9)-9/2ln|(x+sqrt(x^2-9))|}+9ln|(x+sqrt(x^2-9))|#,

# rArr I=1/2{xsqrt(x^2-9)+9ln|(x+sqrt(x^2-9))|}+C#.