#ln(3x+1)-ln(5+x)=ln(2)=># using laws of logs:
#ln[(3x+1)/(x+5)]=ln(2)=># if #ln(A)=ln(B)hArrA=B#:
#(3x+1)/(x+5)=2=># multiply by #(x+5)#:
#3x+1=2(x+5)=># expand right side:
#3x+1=2x+10=># subtract#-2x# and 1 from both sides:
#3x-2x=10-1=># simplify:
#x=9#