How do you solve #ln(x-1) = ln6-ln x#?

1 Answer
Dec 16, 2017

#x=3#

Explanation:

As #ln(x-1)=ln6-lnx#, the domain of #x# is given by #x-1>0# i.e. #x>1#.

As we have #ln(x-1)=ln6-lnx#

or #ln(x-1)=ln(6/x)#

or #x-1=6/x#

or #x^2-x=6#

or #x^2-x-6=0#

or #x^2-3x+2x-6=0#

or #(x-3)(x+2)=0#

i.e. #x=3# or #x=-2#

But as #-2# is not domain,

Solution is #x=3#