How do you solve #lnx=3+ln(x-5)#?

1 Answer
Mar 9, 2016

Answer:

#x=5/(1-e^-3)#

Explanation:

Transposing term in #lnx=3+ln(x-5)#

#lnx-ln(x-5)=3# or

#ln(x/(x-5))=3# - as #lna-lnb=ln(a/b)#

Hence, as #lna=brArra=e^b#

#(x/(x-5))=e^3# or

#x=(x-5)e^3# or

#(e^3-1)x=5e^3# or

#x=(5e^3)/(e^3-1)# or #x=5/(1-e^-3)#