We will use the Change of base Rule for Log # : log_b c=log_a c/log_ab#
Now, #log_2 (x+1)-log_4(x^2+2x-1)=1/2#.
#rArr log_e (x+1)/log_e 2-log_e(x^2+2x-1)/log_e4=1/2#
#rArr log_e(x+1)/log_e2-log_e(x^2+2x-1)/log_e2^2=1/2#
#rArr ln(x+1)/ln2-ln(x^2+2x-1)/(2ln2)=1/2#
#rArr (2ln(x+1))/(2ln2)-ln(x^2+2x-1)/(2ln2)=1/2#
#rArr (2ln(x+1))-ln(x^2+2x-1)=1/2*2ln2#
#rArr ln(x+1)^2-ln(x^2+2x-1)=ln2#
#rArr ln{(x+1)^2/(x^2+2x-1)}=ln2#
Since, #ln# is #1-1# function, wehave,
#(x+1)^2/(x^2+2x-1)=2#
#:. x^2+2x+1=2x^2+4x-2#
#:. x^2+2x-3=0#.
#:. (x-1)(x+3)=0#
#:. x=1, or, x=-3#
Since, #x=-3# makes #log_2(x+1)# undefined, it is an extraneous root.
Hence, #x=1# is a soln., while #x=-3# is extraneous.