How do you solve #log_2(x+5)-log_2(2x-1)=5#?

1 Answer
Jul 13, 2016

I found: #x=37/63#

Explanation:

We can change the subtraction into a division of arguments and write:
#log_2((x+5)/(2x-1))=5#
then we use the definition of log to get rid of it and write:
#(x+5)/(2x-1)=2^5#
#(x+5)/(2x-1)=32#
rearrange:
#x+5=64x-32#
and:
#63x=37#
so:
#x=37/63#