How do you solve #[log_4(x+3)] + [log_4(2-x)] = 1#?

1 Answer
Nov 29, 2015

#x = 1 ,-2#

Explanation:

Now toy need to know some basic rules to attempt this;

No1.

#log_a b = x#

#=>a^x = b#

No2.

#log_a b + log_a c = log _a bc#

Now we are good to go

#[log_4(x+3)] + [log_4(2-x)] = 1#

#log_4(x+3) + log_4(2-x) = 1#

Now lets Identify our common base# => 4#

Now

Using rule number 2 Lets combine

#=>log _4 (x+3)(2-x) = 1#

Now lets go back to our first result

Take a look

#log_a b = x#

Our base here is 4 and our b is # (x+3)(2-x)#

So lets wrap it up;

#4^1 = (x+3)(2-x)#

#4 = (x+3)(2-x)#

Lets now distribute and multiply;

#(x+3)(2-x) = (2)(x) + (-x)(x) + (3)(2) + (3)(-x) #

#(x+3)(2-x) = 2x -x^2 + 6 -3x #

#(x+3)(2-x) = -x^2 + 6 -x #

=> #-x^2 + 6 -x = 4#

=>#-x^2 - x + 2 = 0#

Now lets try factoring

So

#a*b = -2#, # a+b = -1#

So the only possibility to factor is splitting the middle term in pars of
1 and -2

=>#-x^2 - 2x + x + 2 = 0#

#-x(x+2) + 1(x + 2) = 0#

#=>(1-x)(x+2) = 0#

=> There are 2 roots;
#x = 1 ,-2#

=========================================================
Check
=

#=>log _4 (x+3)(2-x) = 1#
......................................................................................................................
x = 1

#=>log _4 (1+3)(2-1) = 1#
#=>log _4 4 = 1#

Which is right ; So it is a valid solution
.......................................................................................................................
x =- 2

#=>log _4 (-2+3)(2-(-2)) = 1#
#=>log _4 (1)(2+2) = 1#

#=>log _4 4 = 1#

Which is right ; So it is a valid solution

===========================================================