How do you solve #log_4 (x - 7) + log_4 (x + 7) = 2#?

2 Answers
Apr 23, 2016

#x=+sqrt65#

Explanation:

#=>log_4((x-7)*(x+7))=2#
#=>x^2-7^2=4^2#
#=>x^2=49+16=65#
#x=+-sqrt65#
negative root not possible as log of negative number is not defined
so #x=sqrt65#

#sqrt 65~~8.062#

Explanation:

#log_b m+log_b n=log_b (mn).#
We can use this here and condense, assuming that x > 7..

#log_4((x-7)(x+7))=2#

Inversely,# (x-7)*(x+7)=4^2#.

#x^2-49=16#

#x=+-sqrt65#

Negative root is inadmissible, as x > 7.