How do you solve #log_[5] (24x + 4) - 2log_[5] (x - 2) = 2#?
1 Answer
Explanation:
#log_5(24x+4)-2log_5(x-2)=2#
#log_5(24x+4)-log_5((x-2)^2)=2#
#log_5((24x+4)/(x-2)^2)=2#
#log_5((24x+4)/(x-2)^2)=log_5(5^2)#
#(24x+4)/(x-2)^2=5^2#
#24x+4=25(x-2)^2#
#24x+4=25(x^2-4x+4)#
#24x+4=25x^2-100x+100#
#color(darkorange)25x^2# #color(turquoise)(-124)x# #color(violet)(+96)=0#
#color(darkorange)(a=25)color(white)(XXXXX)color(turquoise)(b=-124)color(white)(XXXXX)color(violet)(c=96)#
#x=(-b+-sqrt(b^2-4ac))/(2a)#
#x=(-(color(turquoise)(-124))+-sqrt((color(turquoise)(-124))^2-4(color(darkorange)(25))(color(violet)(96))))/(2(color(darkorange)(25)))#
#x=(124+-sqrt(15376-9600))/50#
#x=(124+-sqrt(5776))/50#
#x=(124+-76)/50#
#x=(124+76)/50color(white)(i),color(white)(i)(124-76)/50#
#x=200/50color(white)(i),color(white)(i)48/50#
#color(green)(|bar(ul(color(white)(a/a)x=4color(white)(i),color(white)(i)color(red)cancelcolor(green)(24/25)color(white)(a/a)|)))#
However, if you substitute
For example:
#log_5(24x+4)-2log_5(x-2)=2#
#log_5(24(24/25)+4)-2log_5(24/25-2)=2#
#log_5(676/25)-2log_5(color(red)(-26/25))=2#
For this reason, the correct and only solution to the given logarithmic equation is