How do you solve #Log_(5)x + log_(3)x = 1#?
1 Answer
Feb 23, 2016
Explanation:
Use the change of base formula, which states that
#log_ab=log_cb/log_ca#
The common base I'll use here is
The original expression can be rewritten as:
#lnx/ln5+lnx/ln3=1#
Find a common denominator of
#(lnx(ln3))/(ln5(ln3))+(lnx(ln5))/(ln5(ln3))=1#
#(lnx(ln3)+lnx(ln5))/(ln5(ln3))=1#
Cross multiply.
#lnx(ln3)+lnx(ln5)=ln5(ln3)#
Factor a
#lnx(ln3+ln5)=ln5(ln3)#
Divide both sides by
#lnx=(ln5(ln3))/(ln3+ln5)#
To undo the natural logarithm, exponentiate both sides with base
#x=e^((ln5(ln3))/(ln3+ln5))approx1.9211#