How do you solve #p-3q=-1# and #5p+16q=5# using matrices?
1 Answer
Explanation:
When written in matrix form, the system of linear equations looks like this.
#((1,-3),(5,16)) ((p),(q)) = ((-1),(5))#
We multiply the inverse on both sides.
#((1,-3),(5,16))^{-1} ((1,-3),(5,16)) ((p),(q)) = ((1,-3),(5,16))^{-1} ((-1),(5))#
#((1,0),(0,1)) ((p),(q)) = ((1,-3),(5,16))^{-1} ((-1),(5))#
#((p),(q)) = ((1,-3),(5,16))^{-1} ((-1),(5))#
The inverse of a
#A^{-1} = 1/["det"(A)] ((d,-b),(-c,a))#
#= 1/(ad-bc) ((d,-b),(-c,a))#
In this question,
#a = 1# #b = -3# #c = 5# #d = 16#
#A^{-1} = 1/((1)(16)-(-3)(5)) ((16,-(-3)),(-5,1))#
#= 1/31 ((16,3),(-5,1))#
So,
#((p),(q)) = ((1,-3),(5,16))^{-1} ((-1),(5))#
#= 1/31 ((16,3),(-5,1)) ((-1),(5))#
#= 1/31 ((-1),(10))#
#= ((-1/31),(10/31))#
This means
You can check your answer by substituting the values of
#(-1/31)-3(10/31)=-1#
#5(-1/31)+16(10/31)=5#