How do you solve #sin(2x-1)=sin(3x+1)# ?

3 Answers
May 19, 2018

#x=-2#

Explanation:

If #sin(2x-1)=sin(3x+1)#

Then it follows that

#color(white)(".")2x-1color(white)("d")=color(white)("d")3x+1#

#-1-1color(white)("d")=color(white)("d")3x-2x#

#color(white)("d.dd")-2color(white)("d")=color(white)("d")x#

May 19, 2018

#x={(2k+1)pi/5 , kinZZ}uu{2kpi-2 , k in ZZ}#

Explanation:

Here,

#sin(2x-1)=sin(3x+1)#

#=>sin(3x+1)-sin(2x-1)=0#

We know that,

#color(red)(sinC-sinD=2cos((C+D)/2)sin((C-D)/2)...to(1)#

Using #(1)# we get

#2cos(((3x+1)+(2x-1))/2)sin(((3x+1)-(2x-1))/2)=0#

#=>cos((5x)/2)sin((x+2)/2)=0#

#=>cos((5x)/2)=0 or sin((x+2)/2)=0#

#(i)cos((5x)/2)=0=>(5x)/2=(2k+1)pi/2,kin ZZ#

#=>5x=(2k+1)pi, kinZZ#

#=>color(blue)(x=(2k+1)pi/5, kin ZZ#

#(ii)sin((x+2)/2)=0=>(x+2)/2=kpi,kinZZ#

#=>x+2=2kpi, kinZZ#

#=>color(blue)(x=2kpi-2,kinZZ#

Hence,

#x={(2k+1)pi/5 , kinZZ}uu{2kpi-2 , k in ZZ}#

May 19, 2018

#x = - 114^@65 + k360^@#
#x = 36^@ + k360^@#

Explanation:

sin (2x - 1) = sin (3x + 1)
Unit circle and property of sin function give 2 solutions for (2x - 1):
#(2x - 1) = (3x + 1)# and #(2x - 1) = pi - (3x + 1)#
a. (2x - 1) = (3x + 1)
x = -2 radians, or
#x = ((180^@)(- 2))/(3.14) = - 114^@65 + k360^@#
b. #(2x - 1) = pi - (3x + 1) = pi - 3x - 1#
#5x = pi = 180^@#
#x = 180/5 = 36^@ + k360^@#
Check with calculator.
x = - 114.65 --> 2x = - 229.30 --> 3x = - 343.95 -->
1 radians = 180/3.14 = 57^@32 -->
(2x - 1) = - 229.3 - 57.32 = - 286.62 --> sin (-286.62) = 0.96 -->
sin (3x + 1) = sin (- 343.95 + 57.32) = sin (-286.63) = 0.96. Proved.
x = 36 --> sin (2x - 1) = sin (72 - 57.32) = sin (14.68) = 0.25
sin (3x + 1) = sin (108 + 57.32) = sin (165.32) = 0.25. Proved