Suppose #h = sin(x)#
then
#color(white)("XXXX")##cos(x) = sqrt(1-h^2)#
#sin(x)*cos(x)= sqrt(2)/4# is equivalent to
#color(white)("XXXX")##h(sqrt(1-h^2))= sqrt(2)/4#
#color(white)("XXXX")##sqrt(1-h^2) = sqrt(2)/(4h)#
#color(white)("XXXX")##1-h^2 = 2/(16h^2)#
#color(white)("XXXX")##16h^4-16h^2+2=0#
Let #k=h^2#
#color(white)("XXXX")##8k^2-8k+1=0#
#color(white)("XXXX")##k= (8+-sqrt(64-32))/16#
#color(white)("XXXX")##color(white)("XXXX")##=(2+sqrt(2))/4 or (2-sqrt(2))/4#
#color(white)("XXXX")##h = sqrt((2+sqrt(2))/4) or sqrt((2-sqrt(2)/4)#
(using my handy calculator)
#color(white)("XXXX")##h = 0.92388 or 0.382683#
#x = arcsin(h)#
(and again with my calculator)
#color(white)("XXXX")##x=(3pi)/8 or pi/8#
Given that #x# came out as such pretty values, I expect there is a better (prettier) way to do this.