How do you solve #sin2x-cosx=0 # over the interval 0 to 2pi?
1 Answer
May 9, 2016
Explanation:
Use the identity
#2sinxcosx-cosx=0#
Factor a
#cosx(2sinx-1)=0#
Set both of these terms equal to
#cosx=0" "=>" "x=pi/2,(3pi)/2#
#2sinx-1=0" "=>" "sinx=1/2" "=>" "x=pi/6,(5pi)/6#