How do you solve #\sqrt { 3- x } + \sqrt { 2x + 3} = 3#?

1 Answer
Jun 19, 2017

#x=2sqrt15-5#

Explanation:

#sqrt(3-x)+sqrt(2x+3)=3#

Observe that domain is limited to #x<=3# or #x>= -3/2# i.e. #[-3/2,3]#

#hArrsqrt(2x+3)=3-sqrt(3-x)#, now squaring both sides

#2x+3=3+3-x-6sqrt(9-3x)#

or #2x+3=6-x-6sqrt(9-3x)#

or #6sqrt(9-3x)=3-3x# or #2sqrt(9-3x)=1-x#

and squaring again, we get

#4(9-3x)=1+x^2-2x#

or #36-12x=1+x^2-2x#

or #x^2+10x-35=0# and using quadratic formula

i.e. #x=(-10+-sqrt(100-4xx1xx(-35)))/2#

= #-5+-sqrt240/2=-5+-2sqrt15#

But #-5-2sqrt15# is not in domain and hence #x=2sqrt15-5#