How do you solve the equation #x^2-3x-2=0# using the quadratic formula?

1 Answer
Oct 31, 2016

#x = 3/2+-sqrt(17)/2#

Explanation:

#x^2-3x-2=0#

is in the form:

#ax^2+bx+c = 0#

with #a=1#, #b=-3# and #c=-2#

We can use the quadratic formula to find the roots:

#x = (-b+-sqrt(b^2-4ac))/(2a)#

#color(white)(x) = (-(color(blue)(-3))+-sqrt((color(blue)(-3))^2-4(color(blue)(1))(color(blue)(-2))))/(2(color(blue)(1)))#

#color(white)(x) = (3+-sqrt(9+8))/2#

#color(white)(x) = 3/2+-sqrt(17)/2#