#color(red)(Commenci ng)# #color(red)(compl e ti ng)# #color(red)(the)# #color(red)(squ are)# #color(red)(method)# #color(red)(now,)#
1) Know the formula for the perfect quadratic square, which is,
#(ax+-b)^2 = ax^2+-2abx+b^2#
2) Figure out your #a and b# values,
#a=# coefficient of #x^2#, which is #1#.
#color(red)(b=(-8)/(2(1)) = -4)#
3) Add #color(red)(b^2)# on both sides of the equation, giving you an overall net of 0, hence not affecting the result of the equation,
#x^2-8x+color(red)((-4)^2)=-9+color(red)((-4)^2)#
#(x-4)^2=7#
4) Square root both sides,
#x-4=+-sqrt(7)#
5) Add #4# on both sides,
#x=+-sqrt7+4#
6) Calculate the two values of #x#,
#x=6.64575131 or x=1.35424868#