How do you solve the system of equations #3x + 11y = 9# and #2x - 11y = 6#?

2 Answers
Jul 30, 2017

The solutions are #((x),(y))=((3),(0))#

Explanation:

We apply Cramer's rule

#3x+11y=9#

#2x-11y=6#

The determinants are

#D=|(3,11),(2,-11)|=3*(-11)-2*11=-55#

#D_x=|(9,11),(6,-11)|=9*(-11)-6*11=-165#

#D_y=|(3,9),(2,6)|=3*6-9*2=0#

The solutions are

#x=D_x/D=-165/-55=3#

#y=D_y/D=0/-55=0#

graph{(3x+11y-9)(2x-11y-6)=0 [-10, 10, -5, 5]}

Jul 30, 2017

#(x,y)to(3,0)#

Explanation:

#3xcolor(red)(+11y)=9to(1)#

#2xcolor(red)(-11y)=6to(2)#

#"note the terms in y have opposing signs so that adding"#
#"these terms together will eliminate y"#

#(1)+(2)" term by term"#

#(3x+2x)+(11y-11y)=(9+6)#

#rArr5x=15#

#"divide both sides by 5"#

#(cancel(5) x)/cancel(5)=15/5#

#rArrx=3#

#"substitute this value into either "(1)" or "(2)" and "#
#"solve for y"#

#"substituting in "(1)" gives"#

#(3xx3)+11y=9#

#rArr9+11y=9#

#"subtract 9 from both sides"#

#cancel(9)cancel(-9)+11y=9-9#

#rArr11y=0rArry=0#

#color(blue)"As a check"#

#"substitute these values in "(2)#

#(2xx3)-(11xx0)=6-0=6larr" True"#

#rArr"the point of intersection "=(3,0)#
graph{(y+3/11x-9/11)(y-2/11x+6/11)=0 [-10, 10, -5, 5]}