How do you solve the system of equations #8x + 15y = 85# and #x + y = 8#?
2 Answers
Explanation:
find one of the variables from the second equation: let's use
substitute that into the first equation,
now simplify that...
add like terms and isolate the
now take
Explanation:
#8x+15color(red)(y)=85to(1)#
#x+color(red)(y)=8to(2)#
#"from " (2)color(white)(xx) color(red)(y)=8-xto(3)#
#"substitute " color(red)(y)=8-x" into " (1)#
#rArr8x+15(8-x)=85#
.
#rArr-7x+120=85#
#"subtract 120 from both sides"#
#-7xcancel(120)cancel(-120)=85-120#
#rArr-7x=-35#
#"divide both sides by - 7"#
#(cancel(-7) x)/cancel(-7)=(-35)/(-7)#
#rArrx=5#
#"substitute this value into " (3)#
#rArry=8-5=3#
#color(blue)"As a check " "in " (1)#
#(8xx5)+(15xx3)=40+45=85rarr" True"#
#rArr"the point of intersection "=(5,3)#
graph{(y+x-8)(y+8/15x-17/3)=0 [-10, 10, -5, 5]}