How do you solve the system of equations #-x - 3y = - 8# and #- 2x - 4y = - 10#?

1 Answer
Jun 17, 2017

See a solution process below:

Explanation:

Step 1) Solve the first equation for #x#:

#-x - 3y = -8#

#-x - 3y + color(red)(3y) = -8 + color(red)(3y)#

#-x - 0 = -8 + 3y#

#-x = -8 + 3y#

#color(red)(-1) xx -x = color(red)(-1)(-8 + 3y)#

#x = (color(red)(-1) xx -8) + (color(red)(-1) xx 3y)#

#x = 8 - 3y#

Step 2) Substitute #(8 - 3y)# for #x# in the second equation and solve for #y#:

#-2x - 4y = -10# becomes:

#-2(8 - 3y) - 4y = -10#

#(-2 * 8) + (-2 * -3y) - 4y = -10#

#-16 + 6y - 4y = -10#

#-16 + (6 - 4)y = -10#

#-16 + 2y = -10#

#color(red)(16) - 16 + 2y = color(red)(16) - 10#

#0 + 2y = 6#

#2y = 6#

#(2y)/color(red)(2) = 6/color(red)(2)#

#(color(red)(cancel(color(black)(2)))y)/cancel(color(red)(2)) = 3#

#y = 3#

Step 3) Substitute #3# for #y# in the solution to the first equation at the end of Step 1 and calculate #x#:

#x = 8 - 3y# becomes:

#x = 8 - (3 * 3)#

#x = 8 - 9#

#x = -1#

The solution is: #x = -1# and #y = 3# or #(-1, 3)#