Step 1) Solve the second equation for #x#:
#-x - 3y + color(red)(3y) = 4 + color(red)(3y)#
#-x - 0 = 4 + 3y#
#-x = 4 + 3y#
#color(red)(-1) xx -x = color(red)(-1)(4 + 3y)#
#x = (color(red)(-1) xx 4) + (color(red)(-1) xx 3y)#
#x = -4 - 3y#
Step 2) Substitute #(-4 - 3y)# for #x# in the first equation and solve for #y#:
#y = -4x + 17# becomes:
#y = -4(-4 - 3y) + 17#
#y = (-4 xx -4) + (-4 xx -3y) + 17#
#y = 16 + 12y + 17#
#y = 16 + 17 + 12y#
#y = 33 + 12y#
#y - color(red)(12y) = 33 + 12y - color(red)(12y)#
#1y - color(red)(12y) = 33 + 0#
#(1 - color(red)(12))y = 33#
#-11y = 33#
#(-11y)/color(red)(-11) = 33/color(red)(-11)#
#(color(red)(cancel(color(black)(-11)))y)/cancel(color(red)(-11)) = -3#
#y = -3#
Step 3) Substitute #-3# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:
#x = -4 - 3y# becomes:
#x = -4 - (3 xx -3)#
#x = -4 - (-9)#
#x = -4 + 9#
#x = 5#
The Solution Is: #x = 5# and #y = -3# or #(5, -3)#