How do you solve this logarithm?
#ln (3x)- ln 2=4#
1 Answer
Nov 26, 2016
Explanation:
Use the following
#color(blue)"laws of logarithms"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(logx-logy=log(x/y))color(white)(2/2)|)))#
This law applies to logarithms in any base.
#rArrln(3x)-ln2=ln((3x)/2)#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(log_b x=nhArrx=b^n)color(white)(2/2)|)))# Now the natural log of x, written
#lnx=log_e x#
#rArrln(3x)-ln2=4# can be expressed as
#ln_e((3x)/2)=4rArr(3x)/2=e^4# multiply by 2 and divide by 3
#rArrx=2/3e^4#