How do you solve this logarithm?

#ln (3x)- ln 2=4#

1 Answer
Nov 26, 2016

#x=2/3e^4#

Explanation:

Use the following #color(blue)"laws of logarithms"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(logx-logy=log(x/y))color(white)(2/2)|)))#
This law applies to logarithms in any base.

#rArrln(3x)-ln2=ln((3x)/2)#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(log_b x=nhArrx=b^n)color(white)(2/2)|)))#

Now the natural log of x, written #lnx=log_e x#

#rArrln(3x)-ln2=4#

can be expressed as

#ln_e((3x)/2)=4rArr(3x)/2=e^4#

multiply by 2 and divide by 3

#rArrx=2/3e^4#