#"the first step is to eliminate the fraction in both equations"#
#"multiply both sides by 3 for "(2x+y)/3=15#
#cancel(3)xx(2x+y)/cancel(3)=3xx15#
#rArr2x+y=45#
#"multiply both sides by 5 for "(3x-y)/5=1#
#cancel(5)xx(3x-y)/cancel(5)=5xx1#
#rArr3x-y=5#
#"the two equations to be solved are therefore"#
#2x+color(red)(+y)=45to(1)#
#3xcolor(red)(-y)=5to(2)#
#"we can eliminate the term in y by adding the equations"#
#(1)+(2)" term by term on both sides"#
#(2x+3x)+(y-y)=(45+5)#
#rArr5x=50#
#"divide both sides by 5"#
#rArrx=10#
#"substitute this value into either of the 2 equations"#
#"and solve for y"#
#"substituting in "(1)" gives"#
#(2xx10)+y=45#
#rArry=45-20=25#
#color(blue)"As a check"#
#"substitute these values in "(2)#
#(3xx10)-25=30-25=5larr" True"#
#rArr" point of intersection "=(10,25)#
graph{(y+2x-45)(y-3x+5)((x-10)^2+(y-25)^2+0.02)=0 [-80, 80, -40, 40]}