How do you solve using the completing the square method #x^2+2x+4=0#?
1 Answer
Apr 5, 2017
Explanation:
Given:
#x^2+2x+4 = 0#
Completing the square we get:
#0 = x^2+2x+4#
#color(white)(0) = x^2+2x+1+3#
#color(white)(0) = (x+1)^2+3#
Note that for any Real value of
#(x+1)^2 >= 0#
and so:
#(x+1)^2+3 >= 3#
To solve this quadratic we need to use Complex numbers.
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We use this with
#0 = (x+1)^2+3#
#color(white)(0) = (x+1)^2-(sqrt(3)i)^2#
#color(white)(0) = ((x+1)-sqrt(3)i)((x+1)+sqrt(3)i)#
#color(white)(0) = (x+1-sqrt(3)i)(x+1+sqrt(3)i)#
Hence:
#x = -1+-sqrt(3)i#