#color(red)(Commenci ng)# #color(red)(compl e ti ng)# #color(red)(the)# #color(red)(squ are)# #color(red)(method)# #color(red)(now,)#
1) Know the formula for the perfect quadratic square, which is,
#(ax+-b)^2 = ax^2+-2abx+b^2#
2) Figure out your #a and b# values,
#a=# coefficient of #x^2#, which is #1#.
#color(red)(b=(1)/(2(1)) = 1/2)#
3) Add #color(red)(b^2)# on both sides of the equation, giving you an overall net of 0, hence not affecting the result of the equation,
#x^2+x+color(red)((1/2)^2)=7/4+color(red)((1/2)^2)#
#(x+1/2)^2=2#
4) Square root both sides,
#x+1/2=+-sqrt(2)#
5) Subtract #1/2# on both sides,
#x=+-sqrt2-1/2#
6) Calculate the two values of #x#,
#x=0.91421356 or x=-1.91421356#