How do you solve using the quadratic formula #5x^2 – x + 12 = 0#?

1 Answer
May 14, 2018

See a solution process below;

Explanation:

The quadratic formula states:

For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:

#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#

Substituting:

#color(red)(5)# for #color(red)(a)#

#color(blue)(-1)# for #color(blue)(b)#

#color(green)(12)# for #color(green)(c)# gives:

#x = (-(color(blue)(-1)) +- sqrt(color(blue)(-1)^2 - (4 * color(red)(5) * color(green)(12))))/(2 * color(red)(5))#

#x = (1 +- sqrt(1 - 240))/10#

#x = (1 +- sqrt(-239))/10#