How do you solve #w^ { 2} = - 2w - 12#?

2 Answers
Feb 20, 2017

#w=sqrt(2(-w-6)#

Explanation:

#w^2=-2w-12#

#:.w^2=2(-w-6)#

#:.w=sqrt(2(-w-6))#

Feb 20, 2017

#w=-1+-isqrt11#

Explanation:

Rearrange the quadratic and equate to zero.

#rArrw^2+2w+12=0#

This does not factorise, so check the #color(blue)"discriminant"#

For this quadratic #a=1,b=2" and " c=12#

#rArrb^2-4ac=2^2-(4xx1xx12)=-44#

#b^2-4ac<0rArr" no real roots"#

The roots are complex. We can find them using the
#color(blue)"quadratic formula"#

#w=(-b+-sqrt(b^2-4ac))/(2a)#

#rArrw=(-2+-sqrt(-44))/2#

#color(white)(xxxx)=(-2+-2isqrt11)/2#

#rArrw=-1+-isqrt11#