How do you solve #(x+1)/(x-1)=2/(2x-1)+2/(x-1)#?
2 Answers
Explanation:
From the give equation, we multiply both sides by the
LCD
We simplify to obtain
We expand by multiplication
Transpose all terms to the left side of the equation
We can solve this now by Factoring method
Equate each factor to 0 and solve for the values of x
First factor
Second Factor
By checking these values in the original equation, we will find that
The value
God bless....I hope the explanation is useful.
Explanation:
Before starting, it is important to note the restrictions in this equation. When the denominator of each fraction is set to not equal
#x-1!=0color(white)(XXXXXXXX)2x-1!=0#
#x!=1color(white)(XXXXXXXXXX)2x!=1#
#color(white)(XXXXXXXXXXXXX)x!=1/2#
Thus, the restrictions are
Solving the Equation
#(x+1)/(x-1)=2/(2x-1)+2/(x-1)#
#(x+1)/(x-1)=(2color(darkorange)((x-1)))/((2x-1)color(darkorange)((x-1)))+(2color(blue)((2x-1)))/((x-1)color(blue)((2x-1)))#
#(x+1)/(x-1)=(2(x-1)+2(2x-1))/((2x-1)(x-1))#
#(x+1)/(x-1)=(2x-2+4x-2)/((2x-1)(x-1))#
#(x+1)/(x-1)=(6x-4)/((2x-1)(x-1))#
#(x+1)/color(red)cancelcolor(black)((x-1))xxcolor(teal)((2x-1)color(red)cancelcolor(teal)((x-1)))=(6x-4)/(color(red)cancelcolor(black)((2x-1)(x-1)))xxcolor(red)cancelcolor(teal)((2x-1)(x-1))#
#(x+1)(2x-1)=6x-4#
#2x^2+x-1=6x-4#
#color(violet)2x^2# #color(brown)(-5)x# #color(turquoise)(+3)=0#
#color(violet)(a=2)color(white)(XXXXXX)color(brown)(b=-5)color(white)(XXXXXX)color(turquoise)(c=3)#
#x=(-b+-sqrt(b^2-4ac))/(2a)#
#x=(-(color(brown)(-5))+-sqrt((color(brown)(-5))^2-4(color(violet)2)(color(turquoise)3)))/(2(color(violet)2))#
#x=(5+-sqrt(1))/4#
#x=6/4color(white)(X),color(white)(X)4/4#
#x=3/2color(white)(X),color(white)(X)1#
However, looking back at the restrictions, (
#color(green)(|bar(ul(color(white)(a/a)x=3/2color(white)(a/a)|)))#