How do you solve #x^2-3x+9/4=0# using the quadratic formula?

1 Answer
May 28, 2018

See a solution process below:

Explanation:

The quadratic formula states:

For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:

#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#

Substituting:

#color(red)(1)# for #color(red)(a)#

#color(blue)(-3)# for #color(blue)(b)#

#color(green)(9/4)# for #color(green)(c)# gives:

#x = (-color(blue)(-3) +- sqrt(color(blue)(-3)^2 - (4 * color(red)(1) * color(green)(9/4))))/(2 * color(red)(1))#

#x = (3 +- sqrt(9 - 9))/2#

#x = (3 +- 0)/2#

#x = 3/2#