How do you solve #x^2+4x-3=0# using the quadratic formula?
1 Answer
Use the quadratic formula to find:
#x = -2+-sqrt(7)#
Explanation:
This has roots given by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#=(-4+-sqrt(4^2-(4*1*(-3))))/(2*1)#
#=(-4+-sqrt(16+12))/2#
#=(-4+-sqrt(28))/2#
#=(-4+-sqrt(2^2*7))/2#
#=(-4+-2sqrt(7))/2#
#=-2+-sqrt(7)#
Using the quadratic formula is similar in some ways to completing the square:
#0 = x^2+4x-3#
#=x^2+4x+4-7#
#=(x+2)^2-(sqrt(7))^2#
#=((x+2)-sqrt(7))((x+2)+sqrt(7))#
#=(x+2-sqrt(7))(x+2+sqrt(7))#
Hence
In fact, we can derive the quadratic formula as follows:
Given
#0 = ax^2+bx+c#
#=a(x+b/(2a))^2+(c-b^2/(4a))#
Hence:
#a(x+b/(2a))^2 = b^2/(4a) - c = (b^2-4ac)/(4a)#
Divide both sides by
#(x+b/(2a))^2 = (b^2-4ac)/(2a)^2#
Hence:
#x + b/(2a) = +-sqrt(b^2-4ac)/(2a)#
So:
#x = (-b+-sqrt(b^2-4ac))/(2a)#