# How do you solve #x^2+6x-5=0# by completing the square?

##### 2 Answers

#### Explanation:

For a quadratic

In this case,

Move

#### Explanation:

#"to solve using "color(blue)"completing the square"# add

#(1/2"coefficient of the x-term")^2" to both sides"#

#"that is " (6/2)^2=9#

#rArr(x^2+6xcolor(red)(+9))-5=0color(red)(+9)#

#rArr(x+3)^2-5=9#

#"add 5 to both sides"#

#(x+3)^2cancel(-5)cancel(+5)=9+5#

#rArr(x+3)^2=14#

#color(blue)"take the square root of both sides"#

#sqrt((x+3)^2)=color(red)(+-)sqrt14larr" note plus or minus"#

#rArrx+3=+-sqrt14#

#"subtract 3 from both sides"#

#xcancel(+3)cancel(-3)=-3+-sqrt14#

#rArrx=-3+-sqrt14#