How do you solve #x^2 - x - 1 = 0#?
1 Answer
Use the quadratic formula or complete the square to find:
#x = (1+-sqrt(5))/2#
Explanation:
Method 1 - Quadratic Formula
#x^2-x-1# is of the form#ax^2+bx+c# , with#a=1# ,#b=-1# and#c=-1# .
This has solutions given by the quadratic formula
#x = (-b+-sqrt(b^2-4ac))/(2a) = (-(-1)+-sqrt((-1)^2 - (4xx1xx(-1))))/(2*1)#
#=(1+-sqrt(1+4))/2 = (1+-sqrt(5))/2#
Method 2 - Completing the square
#0 = x^2-x-1 = (x-1/2)^2-(1/2)^2-1#
#= (x-1/2)^2-5/4#
Add
#(x-1/2)^2 = 5/4#
So:
#x-1/2 = +-sqrt(5/4) = +-sqrt(5)/sqrt(4) = +-sqrt(5)/2#
Add
#x = 1/2+-sqrt(5)/2 = (1+-sqrt(5))/2#
How are the two methods related?
Hence:
#(x+b/(2a))^2 = (b^2/(4a)-c)/a = (b^2 - 4ac)/(4a^2)#
So:
#x+b/(2a) = +-sqrt((b^2 - 4ac)/(4a^2)) = +-sqrt(b^2 - 4ac)/sqrt(4a^2)#
#=+-sqrt(b^2 - 4ac)/(2a)#
Subtract
#x = (-b+-sqrt(b^2-4ac))/(2a)#