How do you solve #x^2-x= -1# using the quadratic formula?

1 Answer
Jun 5, 2017

#1/2+-isqrt(3)/2#

Explanation:

We need to solve the equation as standard form (#ax^2+bx+c#):

#x^2-x+1=0#

The quadratic formula states that #(-color(red)(b))/(2(color(blue)(a))) +-sqrt(color(red)(b)^2-4 xx color(blue)(a) xx color(green)(c))/(2(color(blue)(a)))#:

#(-(color(red)(-1)))/(2(color(blue)(1))) +-sqrt((color(red)(-1))^2-4 xx color(blue)(1) xx color(green)(1))/(2(color(blue)(1)))#

#1/2 +- sqrt(1-4)/2#

#1/2 +- sqrt(-3)/2#

#1/2+-isqrt(3)/2 = x#