How do you solve #|x-2| =|x^2-4|#?
1 Answer
Jun 10, 2016
Explanation:
Given:
#abs(x-2) = abs(x^2-4)#
We must have one of the following:
a)
#color(white)(0)(x-2) = (x^2-4)# b)
#color(white)(0)(x-2) = -(x^2-4)#
Case a)
#x-2=x^2-4#
Subtract
#0 = x^2-x-2 = (x-2)(x+1)#
So
Case b)
#x-2=-(x^2-4)#
Add
#0 = x^2+x-6 = (x+3)(x-2)#
So
Check potential solutions
Trying each of these values of
#abs((-1)-2) = abs(-3) = abs((-1)^2-4)#
#abs((2)-2) = 0 = abs((2)^2-4)#
#abs((-3)-2) = 5 = abs((-3)^2-4)#
So all the possible solutions are solutions of the original equation.