How do you solve #|x - 4| = 30#?

2 Answers
Dec 14, 2016

#x_1=34#
#x_2=-26#

Explanation:

For any modulus function/equation, we have two set of values, or branches:

#+x, x>=0#
#-x, x<0#

So we can write any modulus equation using these two branches:

#+(x-4)=30#
#x-4=30#
#x=34#

#-(x-4)=30#
#-x+4=30#
#-x=26#
#x=-26#

Dec 14, 2016

#x = 34# and #x = -26#

Explanation:

Because this is an absolute value problem we need to solve for both #+30# and #-30# as the term within the absolute value function will be positive regardless of whether it is a positive or negative result:

Solution 1)

#x - 4 = 30#

#x - 4 + 4 = 30 + 4#

#x - 0 = 34#

#x = 34#

Solution 2)

#x - 4 = - 30#

#x - 4 + 4 = -30 + 4#

#x - 0 = -26#

#x = -26#