How do you solve #x^4 + x^2 = 1 #?
1 Answer
Mar 14, 2016
Solve as a quadratic in
Explanation:
#x^4+x^2=1#
Subtract
#x^4+x^2-1 = 0#
Writing
#(x^2)^2+(x^2)-1 = 0#
This is in the form
We can use the quadratic formula to find:
#x^2 = (-b+-sqrt(b^2-4ac))/(2a)#
#=(-1+-sqrt(1^2-(4*1*-1)))/(2*1)#
#=(-1+-sqrt(5))/2#
So:
#x = +-sqrt((-1+sqrt(5))/2)#
Or:
#x = +-sqrt((-1-sqrt(5))/2) = +-sqrt((1+sqrt(5))/2)i#