How do you solve #(x+5)/(x-1)=7/6#?

1 Answer
Apr 23, 2018

#x=37#

Explanation:

#"we can use "color(blue)"cross-multiplication ""to solve"#

#"given one fraction equal to another fraction then"#

#•color(white)(x)a/b=c/drArrad=bclarrcolor(blue)"cross-multiplication"#

#(x+5)/(x-1)=7/6#

#rArr7(x-1)=6(x+5)larrcolor(blue)"distribute"#

#rArr7x-7=6x+30#

#"subtract 6x from both sides"#

#7x-6x-7=cancel(6x)cancel(-6x)+30#

#rArrx-7=30#

#"add 7 to both sides"#

#xcancel(-7)cancel(+7)=30+7#

#color(blue)"As a check"#

Substitute this value into the left side of the equation and if equal to the right side then it is the solution.

#(37+5)/(37-1)=42/36=7/6=" right side"#

#rArrx=37" is the solution"#