How do you solve #(x+8)(x-10)(x+6)>0#?

1 Answer
Oct 11, 2017

Answer:

Solution: # x < -8 and -6 < x < 10 or (-oo,-8) uu (-6,10) #

Explanation:

# (x+8)(x-10)(x+6) >0#. Critical points are

# x=-8 , x= -6 , x=10#

Sign chart:

When #x< -8# sign of #(x+8)(x-10)(x+6) # is # (-) * (-)* (-) = (-) ; < 0#

When # -8 < x < -6 # sign of #(x+8)(x-10)(x+6) # is # (+) * (-)* (-) = (+) ; > 0#

When # -6 < x < 10 # sign of #(x+8)(x-10)(x+6) # is # (+) * (-)* (+) = (-) ; < 0#

When # x > 10 # sign of #(x+8)(x-10)(x+6) # is # (+) * (+)* (+) = (+) ; > 0#

Solution: # x < -8 and -6 < x < 10 or (-oo,-8) uu (-6,10) #