How do you solve #y'=(2x-3)/(y^2+y+4)# given y(1)=2?

1 Answer

# 2y^3+3y^2+24y = 6x^2-18x + 44 #

Explanation:

We have #y'=(2x-3)/(y^2+y+4)#, or

#dy/dx=(2x-3)/(y^2+y+4)#

Which is a simple First Order separable DE, we can therefore separate the variables to get:
# (y^2+y+4)dy/dx=(2x-3) #
# :. int (y^2+y+4)dy = int (2x-3)dx #

We can integrate this to get:

# 1/3y^3+1/2y^2+4y = x^2-3x + C #

Given #y(1)=2# we get:

# 1/3 2^3+1/2 2^2+4*2 = 1^2-3 + C #
# :. 8/3+2+8 = 1-3 + C #
# :. C=44/3 #

So the solution is:

# 1/3y^3+1/2y^2+4y = x^2-3x + 44/3 #
# :. 2y^3+3y^2+24y = 6x^2-18x + 44 #