How do you test the alternating series #Sigma ((-1)^(n+1)2^n)/(n!)# from n is #[0,oo)# for convergence?

1 Answer
Apr 24, 2018

Converges absolutely

Explanation:

Use the ratio test. This test works for alternating series.

If there is a series #sum_(n=0)^infty a_n# then consider #lim_(n rarr infty)abs(a_(n+1)/a_n)=L#.
If #L<1# then the series absolutely converges.
If #L>1# then the series diverges.
If #L=1# then the test is inconclusive.

For our series, we have:
#lim_(n rarr infty)abs(((-1)^((n+1)+1)2^(n+1))/((n+1)!)div((-1)^(n+1)2^n)/(n!))#
#lim_(n rarr infty)abs(((-1)^(n+2)2^(n+1)n!)/((-1)^(n+1)2^n(n+1)!)#
#lim_(n rarr infty)abs((-2)/(n+1))#
#0#

#0<1# so the series converges absolutely.