How do you test the improper integral #int (2x)/(sqrt(x^2+1)) dx# from #(-oo, oo)# and evaluate if possible? Calculus Tests of Convergence / Divergence Strategies to Test an Infinite Series for Convergence 1 Answer Cesareo R. Feb 28, 2017 See below. Explanation: #(2x)/(sqrt(x^2+1))# is an odd function so #int_(-a)^a (2x)/(sqrt(x^2+1)) dx = 0# Answer link Related questions What is the sum of the series #1+ln2+(((ln2)^2)/(2!))+...+(((ln2)^n)/(n!))+...#? How do I write #(5/(1*2))+(5/(2*3))+(5/(3*4))+...+(5/n(n+1))+...#in summation notation, and how... How do you show whether the improper integral #int ln(x)/x^3 dx# converges or diverges from 1 to... How do you show whether the improper integral #int e^x/ (e^2x+3)dx# converges or diverges from 0... How do you show whether the improper integral #int (79 x^2/(9 + x^6)) dx# converges or diverges... How do you show whether the improper integral #int 1/ (1+x^2) dx# converges or diverges from... How do you prove that the integral of ln(sin(x)) on the interval [0, pi/2] is convergent? How do you show whether the improper integral #int (x^2)(e^(-x^3)) dx# converges or diverges... Using the definition of convergence, how do you prove that the sequence #{5+(1/n)}# converges... Using the definition of convergence, how do you prove that the sequence #{2^ -n}# converges from... See all questions in Strategies to Test an Infinite Series for Convergence Impact of this question 2512 views around the world You can reuse this answer Creative Commons License