How do you use a half-angle formula to simplify #tan[ (9pi) / 8 ]#?

1 Answer
Aug 2, 2015

Simplify #tan ((9pi)/8)#

Explanation:

#tan ((9pi)/8) = tan (pi/8 + pi)# = tan pi/8
Call tan #pi/8 = t#
#tan 2t = tan ((2pi)/8) = tan (pi/4) = 1#
Use trig identity: # tan 2t = 2t/(1 - t^2)#
#tan (pi/4) = 1 = (2t)/(1 - t^2)# --># 1 - t^2 = 2t #-->

#t^2 + 2t - 1 = 0#
#D = d^2 = b^2 - 4ac = 4 + 4 = 8 #--> #d = +- 2sqrt2#

#tan ((9pi)/8) = tan (pi/8) = t = - 1 +- sqrt2#

Since the arc #(9pi)/8# is in Quadrant III, then only the positive answer is accepted.
#tan (9pi)/8 = - 1 + sqrt2# = 0.414

Check with calculator --> tan (22.5) = 0.414 OK