How do you use implicit differentiation to find (dy)/(dx) given 3x^2y^2=4x^2-4xy?
2 Answers
Aug 15, 2017
dx/dy=(8x-4y-6xy^2)/(6x^2y + 4x)
Explanation:
Given -
3x^2y^2=4x^2-4xy
6xy^2+6x^2y.dx/dy=8x-4y+(-4x.dy/dx)
6xy^2+6x^2y.dx/dy=8x-4y-4x.dy/dx
6xy^2+6x^2y.dx/dy+4x.dy/dx=8x-4y
6x^2y.dx/dy+4x.dy/dx=8x-4y-6xy^2
(6x^2y + 4x)dx/dy=8x-4y-6xy^2
dx/dy=(8x-4y-6xy^2)/(6x^2y + 4x)
Aug 15, 2017
Explanation:
Product and power rule:
Move all terms that include