How do you use partial fraction decomposition to decompose the fraction to integrate #x/((x+7)(x+8)(x+9))#?

1 Answer
Mar 31, 2018

#intx/((x+7)(x+8)(x+9))dx=7/2ln|x+7|+8ln|x+8|-9/2ln|x+9|+C#

Explanation:

We can decompose the integrand as follows:

#x/((x+7)(x+8)(x+9))=A/(x+7)+B/(x+8)+C/(x+9)#

Add up the right side:

#x/((x+7)(x+8)(x+9))=(A(x+8)(x+9))/((x+7)(x+8)(x+9))+((B)(x+7)(x+9))/((x+7)(x+8)(x+9))+((C)(x+7)(x+8))/((x+7)(x+8)(x+9))#

Set numerators equal:

#x=A(x+8)(x+9)+B(x+7)(x+9)+C(x+7)(x+8)#

We need to find #A,B,C.# Fortunately, it looks like we can do this by choosing particular values of #x# which will eliminate some terms on the right side.

#x=-8:#

#-8=B(-1)(1), B=8#

#x=-7:#

#-7=A(-1)(2), A=7/2#

#x=-9:#

#-9=C(-2)(-1), C=-9/2#

So, with the decomposed fraction, the integral becomes

#7/2intdx/(x+7)+8intdx/(x+8)-9/2intdx/(x+9)#

Note that all constants were factored out.

These are all simple integrals.

In general, #intdx/(x+-a)=ln|x+-a|+C#

Integrating yields

#intx/((x+7)(x+8)(x+9))dx=7/2ln|x+7|+8ln|x+8|-9/2ln|x+9|+C#