How do you use solve #x^2 - 10x + 8 = 0#?
1 Answer
Mar 3, 2016
Complete the square and use the difference of squares identity to find:
#x = 5+-sqrt(17)#
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We use this with
Complete the square then use the above as follows:
#0 = x^2-10x+8#
#=x^2-10x+25-17#
#=(x-5)^2-(sqrt(17))^2#
#=((x-5)-sqrt(17))((x-5)+sqrt(17))#
#=(x-5-sqrt(17))(x-5+sqrt(17))#
Hence: